

World PV Cell/Module Production (MW)

Source: PV News, March 2004

World PV Systems Sales (\$B)

PV Manufacturing R&D Cost/Capacity

Reduction in Module Price versus Cumulative Shipments Experience Curve

PV System vs. Electricity Costs

PV Market Sectors

Changing Landscape of Electric Power

- Natural Gas Shortage
- Transmission and Distribution Limitations
- CEO's Call for National Energy Strategy
 - > With Balance
- International Pressure on Global Climate Change
- State and Local Initiatives for Renewable Energy

What is this NCPV?

The *National Center for Photovoltaics* is the organization established by the DOE to lead the U.S. photovoltaic efforts

- in performing world-class R&D,
- promoting partnering and growth opportunities,
- > serving as a forum and information source—

To guide and assist the U.S. photovoltaic activities toward maintaining and enhancing technological and industrial leadership.

Efficient Solar Electric Conversion

- Current technologies need improved manufacturing processes
- 3rd generation technologies demand both very low cost and very high efficiency

Best Research-Cell Efficiencies

Discovery Mode Technologies NCPV

Absorber

Charge Transfer

Organic/Metalorganic Dye Nanostructured Inorganic

Inorganic particle **←** Inorganic matrix

Inorganic particle **←** Polymer

Organic particle **←** Polymer

Small Molecule Organic

Polymer

Low Cost Processes

Large-Area Optical and Electronic Materials

Reliability and Performance

PV Summary

- PV Business is a Business
 - Market acceptance;
 - >\$5B sales
 - New corporate sector investments
- NREL's research in first, second and third generation PV materials and processes provides infrastructure for nearer term PV and non-PV product development

NREL/ReflecTech Silvered Film NCPV

A better reflector for outdoor mirrors.

7+ year development program just completed.

Reflective Film Properties & Applications

- High Solar Reflectance
 - 94% Specular Reflectance (25 mrad)
 - 94.5% Hemispherical Reflectance
- Excellent Outdoor Weatherability
 - 10+ year UV stability
 - NREL and Independent Lab Testing
- Low Production Costs
 - Partnership with Bakaert
 - 60 inch wide rolls demonstrated

- ✓ Solar trough & dish
 - Solargenix
- ✓ Daylighting
- ✓ Thermal control

High Throughput Optic-based Production Monitors NCPV

- (dislocation) density, Defect grain boundary distribution
- •Reflectance (specular, near-specular, and diffuse)
- •Light Beam Induced Current (LBIC)

Light Induced Current Map

Dislocation Map

Reflectance Map

Grain Boundary Map

Wafer Thickness

Reflectometer

40 msec full wafer data acquisition

Solar Technology and Technology Transfer

How can we make these technologies dependably available to the PV module manufacturers?

- Measurement tools improve process yields and product performance – meets industry requests
 - monitors wafer quality, saw damage, texture etch, diffusion, AR coating, contacts
 - − ~\$10 M annual sales

• Needs:

- High speed wafer transport mechanism engineering
- Manufacturing and sales
- Reliable maintenance and technical support

Need for New TCOs

Low-e Windows

Lighting

Discovery Mode Technologies

Absorber

Charge Transfer

Inorganic particle Inorganic matrix

Inorganic particle Polymer

Small Molecule Organic

Polymer

Tailoring properties of advanced TCO's is a critical enabling technology for all of these devices (and other applications from these materials platforms)

Transparent Conducting Oxides

New Materials Are Needed

Properties

• Transmittance Visible 80-98%

• Resistivity $80-400 \mu\Omega$ -cm

• Carrier Concentration $10^{19} - > 10^{21}$ cm-3

• Plasma Wavelength $1.0 - 2.0 \mu$

• Surface morphology atomic to Lambertian

• Work function 4.2 - 5.3 eV

• n-type and p-type Transparent Electronics, UV sources

• Other Properties: IR Transparency, Reflectivity, Etchability, Chemical Stability, Hardness, Tribology, Deposition, Temperature, Thermal Stability

... and new high thoughput materials science

Developing Capabilities for Combinatorial Materials Science @ NREL

Combinatorial, Focused-Beam X-ray Diffraction

Combinatorial Oxide Deposition Control Combinatorial Oxide Deposition Control Control

Combi Sputter I (3 guns)

UV/VIS/NIR

NCPV

Transmission / Reflection

Spectral Range: 200 - 2000 nm

Transparency and Reflectivity

Conductivity Mapping

4 pt probe add-on to UV/VIS/NIR mapping setup

Infrared (FTIR) R, T

FTIR

Microscope Transmission Reflection

FTIR Reflection

Ink Based Nanostructured Oxides NCPV

- Synthesis of nanostructured oxides and membranes by wed chemical approaches
- Chemical modification of oxide and organic interfaces

ZnO

TiO₂

 Al_2O_3

Nanostructured oxide - polymer composites

2-d slice of a nanostructured device concept:

Multistep charge transfer at interface:

- 1) polymer* + adsorbate → polymer* + adsorbate
- 2) adsorbate + oxide → adsorbate + oxide

Strengths:

- Long optical path-length
- Short carrier-to-electrode path-length
- Higher electron mobility
- No isolated clusters, guaranteed percolation
- Better adhesion between layers, mechanical durability

Weakness:

How to fabricate?

Piezoelectric Inkjet Technology

Microfab inkjet printer:

- Piezoelectric actuator
- 20, 50 μm orifice
- Drop generation rates up to 2000 Hz
- X-Y translation stage with resistive copper heater

Ink Jet Printing of Ag and Cu contacts VCPV

for Si Solar Cells 8% Cells on Si₃N₄

Line thickness: 15 μm

Line width: 250µm

Dep. temperature: 180 °C

Ann. temperature: 850 °C

Substrates from Evergreen Solar

Inkjet-printed Cu CRADA Microfab

On PCB

Printed on glass, metal and Plastic Circuit Board (PCB)

On glass

- Pure (unoxydized) Cu by rapid thermal processing in air and by printing on heated (200 °C) substrate in N₂
- Resistivity: 8*10⁻⁶ Ohm•cm (vacuum Cu 2*10⁻⁶ Ohm•cm)
- Line resolution: 250 μm for 10 μm thick line
- Deposition rate: 0.2 μm/pass

Filling the Technology Pipeline

The Model For National Laboratory Performance

- Intellectual property control
- Partnership terms
- Accounting and billing

"Rule of Tens"

Innovation in Industry Partnerships

- CRADA, TSA, ASA, NDA, MOU
- On-site shared operation of equipment
- Equipment loans
 - From and To NREL
- Web served protected data exchange

FASSTIM

PECVD Processing for CIGS Applied Materials -AKT CRADA

- CIGS Films (at NREL)
- Window TCO Films (at NREL)
- Window/Buffer Interface Films (at NREL)
- Buffer Film (at NREL)
- Mo Metal Film (at AKT)
- AR Coating Film (at AKT)

Low Cost Processes

Large-Area Optical and Electronic Materials

Silicon Feedstock and Wafers

CRADA GTi CVD Process

TSA Crucible Evaluation

License NREL Silicon
Purification by Iodine
Chemical Vapor Transport
with R-Wave

Keeping Pace with the Entrepreneurs

- Industry is losing the maturity of shared marketing resources (How can we help keep track of reality?)
- Improve coordination among entrepreneurs, investors and NREL (How to best "invest" our credibility?)
- Input for improving evaluation of NREL technologies (Have we made good research investments?)

Back-up material for PV

Crystalline Silicon (Ingot-Based) PV

- ~85% of today's market
- ~400 MW capacity (to double in near-term)
- Proven products, 20-25 year warranties
- Large ingots: 100 kg CZ, 250 kg casting
- Multiple ingot growth with melt replenishment
- Wire saw: < 250 μm wafers, < 200 μm kerf

Efficiency Status	Cells	Modules
Float-zone	24.7	22.7*
Czochralski	22.0	13–176
Cast poly	19.8	10–13

- Batch/continuous processing
- High-efficiency devices in production
- Well-developed technology base--new understanding of defects/impurities
- * Best prototype

02679603

Crystalline Silicon (Non-Ingot-Based) PV

Substrate

- •**Key companies:** RWE Schott Solar, Evergreen Solar, AstroPower, Pacific Solar, Kaneka
- Status varies from prototype modules to pilot production to commercial products (many MW)
- Proven products (~ 6% of market)

RWE Schott

- Capacity increases underway—many tens of MW in near term
- •* Depends on process (some efficiencies not verified)
- ** Best prototype

Efficiency Status		Cells
Modules		
EFG	14–16	11–13
String ribbon	14–16	10–12
Thick Si/substrate	16.6	9–10
Thin Si/substrate	5-12*	~ 7**

- Improved performance from defect/impurity and passivation studies
- Increasing interest in thin silicon growth poor properties.

Breakout of Installed Price of a Residential PV System by %

Design(L) Electrical(L) Mounting(L) Modules(M) Inverter(M) Rack(M) Electrical(M)

Price Elements (L, labor: M, Materials)

Thin-Film PV

Efficiency status:

Cell 12-19 Submodule 10-12 Module 7-11 Commercial 5-10

 Understanding of film growth, microstructures, defects, and device physics

Reproducible high-efficiency processes

ITO/ZnO

Cuintasie.

Glass/SS/Polymer

Multiple junctions

Key companies: United Solar/ ECD, Shell Solar, EPV, Global Solar/ITN, First Solar, Iowa Thin Films, HelioVolt, Wurth Solar, Showa-Shell, DayStar, Miasolé

- Multi-MW/year in consumer products
- 5 and 10 MW plants operational; few tens of MW in near term
- Unique products for building integration

02679607

Conventional PV Installations NCPV

Powerlight Roof Integrated PV System NCPV

Advances in PV System Design Can Also Achieve Cost Advantages

THE POWERGUARD™ SYSTEM POWERGUARD™ Solar Electric Roof Tiles Roofing Membrano tyrofoam® Insulation

United Solar Shingles

bines PV Power with Energy Saving from Insulation

High-Efficiency and Concentrator PV

Key companies: Amonix, Spectrolab, Emcore, Sunpower, ENTECH; Solar Research Corp. (Australia)

- Manufacturability demonstrated
 - Low-concentration, line focus
 - High-concentration, point focus
 - High efficiency cells (Si, GaAs, multijunctions) in production
- Limited applications in today's markets
 - Hydrogen generation may be well matched

Efficiencies:	Si (up to 400X)	27
	GaAs (up to 1000X)	28
	GalnP ₂ /GaAs (1X)	30.3
	GalnP ₂ /GaAs (180X)	30.2
	GalnP ₂ /GaAs/Ge (40–600X)	36.9

- Module efficiencies: 15-17% (Si); best prototypes: >20% (Si), >24% (GaAs), 28%
 (GaInP₂/GaAs/Ge,10X)
- Large space markets drive GaInP₂/GaAs and ₀₂₆₇₉₆₁₃ GaInP₂/GaAs/Ge commercial cell production

Novel Concepts, Excitonic Devices and New Materials NCPV

•Key Companies: GE, Kodak, Konarka, NanoSolar, NanoSys, Luna, UltraDots ...

Light	 Enhanced absorptivity of dyes
management	 Low bandgap polymers
Reduce	 Higher mobility polymers
series	 Enhanced TCOs
resistance	 Electrolyte formulations
	 Polymer morphology

•Dye-sensitized TiO₂ photochemical cells

- Potential for very low cost
- Nanocrystalline TiO₂, with monolayer dye sensitizer,in liquid electrolyte
- 11%-efficient cell; scale-up for consumer products underway
- Dye stability issue
- Gel or solid-state electrolytes in research
- Photoelectrochromic window (with WO₃)

02679615

